Wednesday, 11 June 2014


Global warming

 


 

Global warming is the unequivocal and continuing rise in the average temperature of Earth's climate system.

 

Since 1971, 90% of the warming has occurred in the oceans. Despite the oceans' dominant role in energy storage, the term "global warming" is also used to refer to increases in average temperature of the air and sea at Earth's surface. Since the early 20th century, the global air and sea surface temperature has increased about 0.8 °C (1.4 °F), with about two-thirds of the increase occurring since 1980. Each of the last three decades has been successively warmer at the Earth's surface than any preceding decade since 1850.

 

Scientific understanding of the cause of global warming has been increasing. In its fourth assessment (AR4 2007) of the relevant scientific literature, the Intergovernmental Panel on Climate Change (IPCC) reported that scientists were more than 90% certain that most of global warming was being caused by increasing concentrations of greenhouse gases produced by human activities. In 2010 that finding was recognized by the national science academies of all major industrialized nations. Affirming these findings in 2013, the IPCC stated that the largest driver of global warming is carbon dioxide (CO2) emissions from fossil fuel combustion, cement production, and land use changes such as deforestation. Its 2013 report states

 

Human influence has been detected in warming of the atmosphere and the ocean, in changes in the global water cycle, in reductions in snow and ice, in global mean sea level rise, and in changes in some climate extremes. This evidence for human influence has grown since AR4. It is extremely likely (95-100%) that human influence has been the dominant cause of the observed warming since the mid-20th century. - IPCC AR5 WG1 Summary for Policymakers

 

Climate model projections were summarized in the 2007 Fourth Assessment Report (AR4) by the Intergovernmental Panel on Climate Change (IPCC). They indicated that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C (2.0 to 5.2 °F) for their lowest emissions scenario and 2.4 to 6.4 °C (4.3 to 11.5 °F) for their highest. The ranges of these estimates arise from the use of models with differing sensitivity to greenhouse gas concentrations.

 

Future climate change and associated impacts will vary from region to region around the globe. The effects of an increase in global temperature include a rise in sea levels and a change in the amount and pattern of precipitation, as well as a probable expansion of subtropical deserts. Warming is expected to be strongest in the Arctic, with the continuing retreat of glaciers, permafrost and sea ice. Other likely effects of the warming include more frequent extreme weather events including heat waves, droughts and heavy rainfall; ocean acidification; and species extinctions due to shifting temperature regimes. Effects significant to humans include the threat to food security from decreasing crop yields and the loss of habitat from inundation.

 

Proposed policy responses to global warming include mitigation by emissions reduction, adaptation to its effects, building systems resilient to its effects, and possible future climate engineering. Most countries are parties to the United Nations Framework Convention on Climate Change (UNFCCC whose ultimate objective is to prevent dangerous anthropogenic (i.e., human-induced) climate change. Parties to the UNFCCC have adopted a range of policies designed to reduce greenhouse gas emissions and to assist in adaptation to global warming. Parties to the UNFCCC have agreed that deep cuts in emissions are required and that future global warming should be limited to below 2.0 °C (3.6 °F) relative to the pre-industrial level. Reports published in 2011 by the United Nations Environment Programme and the International Energy Agency suggest that efforts as of the early 21st century to reduce emissions may be inadequate to meet the UNFCCC's 2 °C target.

 

Emissions of greenhouse gases grew 2.2% per year between 2000 and 2010, compared with 1.3% per year from 1970 to 2000.

 

Observed and expected environmental effects

 

Long-term effects

 

On the timescale of centuries to millennia, the magnitude of global warming will be determined primarily by anthropogenic CO2 emissions. This is due to carbon dioxide's very long lifetime in the atmosphere. Stabilizing global average temperature would require reductions in anthropogenic CO2 emissions. Reductions in emissions of non-CO2 anthropogenic GHGs (e.g., methane and nitrous oxide) would also be necessary. For CO2, anthropogenic emissions would need to be reduced by more than 80% relative to their peak level. Even if this were to be achieved, global average temperatures would remain close to their highest level for many centuries.

 

Large-scale and abrupt impacts

 

Climate change could result in global, large-scale changes in natural and social systems. Two examples are ocean acidification caused by increased atmospheric concentrations of carbon dioxide, and the long-term melting of ice sheets, which contributes to sea level rise.

Some large-scale changes could occur abruptly, i.e., over a short time period, and might also be irreversible. An example of abrupt climate change is the rapid release of methane and carbon dioxide from permafrost, which would lead to amplified global warming. Scientific understanding of abrupt climate change is generally poor. However, the probability of abrupt changes appears to be very low. Factors that may increase the probability of abrupt climate change include higher magnitudes of global warming, warming that occurs more rapidly, and warming that is sustained over longer time periods.

 

Ecological systems

 

In terrestrial ecosystems, the earlier timing of spring events, and poleward and upward shifts in plant and animal ranges, have been linked with high confidence to recent warming. Future climate change is expected to particularly affect certain ecosystems, including tundra, mangroves, and coral reefs. It is expected that most ecosystems will be affected by higher atmospheric CO2 levels, combined with higher global temperatures. Overall, it is expected that climate change will result in the extinction of many species and reduced diversity of ecosystems.

Increases in atmospheric CO2 concentrations have led to an increase in ocean acidity. Dissolved CO2 increases ocean acidity, which is measured by lower pH values. Between 1750 to 2000, surface-ocean pH has decreased by ~0.1, from ~8.2 to ~8.1. Surface-ocean pH has probably not been below ~8.1 during the past 2 million years. Projections suggest that surface-ocean pH could decrease by an additional 0.3-0.4 units by 2100. Future ocean acidification could threaten coral reefs, fisheries, protected species, and other natural resources of value to society.

 

Observed and expected effects on social systems

 

Food security

 

Under present trends, by 2030, maize production in Southern Africa could decrease by up to 30%, while rice, millet and maize in South Asia could decrease by up to 10%. By 2080, yields in developing countries could decrease by 10% to 25% on average while India could see a drop of 30% to 40%. By 2100, while the population of three billion is expected to double, rice and maize yields in the tropics are expected to decrease by 20–40% because of higher temperatures without accounting for the decrease in yields as a result of soil moisture and water supplies stressed by rising temperatures.

 

Future warming of around 3 °C (by 2100, relative to 1990–2000) could result in increased crop yields in mid- and high-latitude areas, but in low-latitude areas, yields could decline, increasing the risk of malnutrition. A similar regional pattern of net benefits and costs could occur for economic (market-sector) effects. Warming above 3 °C could result in crop yields falling in temperate regions, leading to a reduction in global food production.

 

Habitat inundation

 

In small islands and megadeltas, inundation as a result of sea level rise is expected to threaten vital infrastructure and human settlements. This could lead to issues of homelessness in countries with low lying areas such as Bangladesh, as well as statelessness for populations in countries such as the Maldive and Tuvalu.

 

 

 

No comments:

Post a Comment